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ABSTRACT. Objective: Devices such as mobile phones and smart
speakers could be useful to remotely identify voice alterations associ-
ated with alcohol intoxication that could be used to deliver just-in-time
interventions, but data to support such approaches for the English lan-
guage are lacking. In this controlled laboratory study, we compare how
well English spectrographic voice features identify alcohol intoxication.
Method: A total of 18 participants (72% male, ages 21–62 years) read a
randomly assigned tongue twister before drinking and each hour for up
to 7 hours after drinking a weight-based dose of alcohol. Vocal segments
were cleaned and split into 1-second windows. We built support vector
machine models for detecting alcohol intoxication, defined as breath

alcohol concentration > .08%, comparing the baseline voice spectro-
graphic signature to each subsequent timepoint and examined accuracy
with 95% confidence intervals (CIs). Results: Alcohol intoxication was
predicted with an accuracy of 98% (95% CI [97.1, 98.6]); mean sensitiv-
ity = .98; specificity = .97; positive predictive value = .97; and negative
predictive value = .98. Conclusions: In this small, controlled laboratory
study, voice spectrographic signatures collected from brief recorded
English segments were useful in identifying alcohol intoxication. Larger
studies using varied voice samples are needed to validate and expand
models. (J. Stud. Alcohol Drugs, 84, 808–813, 2023)
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DRINKING ALCOHOL TO INTOXICATION increases
risks for numerous health and public safety problems

(Alpert et al., 2022) including motor vehicle crashes (Naimi
et al., 2018) and is responsible for an estimated 192 billion
dollars in costs each year in the United States (Sacks et
al., 2015). Mobile digital behavioral interventions reduce
alcohol consumption in adults (Bendtsen et al., 2021; Kaner
et al., 2017) and overcome barriers to in-person prevention
and treatment (Venegas et al., 2021). Still, effects are small
and the design is not yet optimized to provide just-in-time
support (Nahum-Shani et al., 2017). Identifying individuals
remotely who are intoxicated provides an opportunity
to intervene in real time to mitigate further risks and
subsequent harms.

Currently there are no commercially available tools to
unobtrusively and effectively identify alcohol intoxication.
Transdermal alcohol sensors (Russell et al., 2022) and
portable breath alcohol meters (Norman et al., 2021) can
accurately estimate blood alcohol content, but cost and
availability-related barriers preclude widespread use (Pias-
ecki, 2019). Self-report “drink counting” tools can accurately
estimate blood alcohol content (Wray et al., 2014) but are
too burdensome to be practically useful. Our group has

shown that smartphone-based sensors can accurately detect
alcohol intoxication remotely and that the most informative
sensor features were related to time (i.e., day of week, time
of day), movement (e.g., change in activities), device usage
(e.g., screen duration), and communication (e.g., call dura-
tion) (Bae et al., 2018).

Separately, we have shown that smartphone-sensed gait
(Suffoletto et al., 2018, 2020) can distinguish intoxicated
from nondrinking states. Still, other measures of psychomo-
tor function that are sensitive to acute alcohol consumption
and can be readily measured remotely using existing tech-
nologies remain underdeveloped.

One measure of psychomotor function that could be use-
ful in discriminating intoxicated from nonintoxicated states
is the voice, the result of high-level sensory, cognitive, and
motor processes requiring coordination of more than 100
muscles. There is a large and growing science of using voice
to detect altered neurological “states” in individuals. For ex-
ample, there are correlations found between prosodic, articu-
latory, and acoustic features of speech and clinical ratings
of both depression and suicidality (Cummins et al., 2015).
As well, phonation, articulation, and prosody abnormalities
can detect untreated Parkinson’s disease (Rusz et al., 2011).
Preliminary research has also detected speech changes after
administration of 3,4-methylenedioxymethamphetamine
(MDMA; Agurto et al., 2020).

Although it has long been recognized that alcohol alters the
acoustic-phonetic properties of speech (Johnson et al., 1990;
Pisoni & Martin, 1989), human accuracy of classification is
suboptimal (Baumeister & Schiel, 2013). Modern computing
capabilities and signal analysis software help overcome the
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complexity of voice analysis. Specifically, methods to extract
hierarchical acoustic features, perform iterative speaker
normalization, and use machine learning techniques are all
available to improve classification (Bone et al., 2014).

The widespread availability of audio samples through
smartphones and smart speakers makes voice an attractive
biomarker. For example, smartphones are near-ubiquitous
(Pew Research Center, 2021), an estimated 35% of Ameri-
cans own smart speakers (NPR, 2022), and a growing list
of technologies incorporate voice commands (e.g., in-car
systems). Most if not all of these systems contain audio
recording, computing, and data transfer capabilities that
could allow for remote and real-time inference of alcohol
intoxication. Despite these capacities, however, no current
commercially available voice-based recognition of alcohol
intoxication exists.

In this proof-of-concept study, we test whether brief
voice recordings and spectrographic (i.e., frequency-based)
features can be useful to correctly discriminate alcohol-
intoxicated from nonintoxicated states in adults. We chose to
focus on frequency-based features given that prior research
had shown that they are particularly good at discriminating
levels of intoxication (Hollien et al., 2001). Findings could
help inform new strategies for remote identification of in-
toxication for at-risk individuals to trigger just-in-time digital
interventions to reduce health and public safety harms.

Method

Participants

From August to December 2018, we recruited 20 adults
for a controlled laboratory study to test the effects of high
doses of alcohol on blood and toxicology biomarkers. Par-
ticipants were recruited via word of mouth and locally posted
advertisements for a study to examine the effects of alcohol
on the body. We conducted an initial screen by telephone to
ensure individuals were at least 21 years old and consumed
alcohol at least once per week. Consented participants then
made appointments to come to the laboratory for one session
that would last at least 7 hours and were instructed to abstain
from consuming alcohol or using other psychoactive drugs
during the 24 hours preceding the session. However, we did
not confirm that participants had not used any psychoactive
drugs on the day of the experiment. They were also told to
fast and refrain from caffeine consumption at least 4 hours
before the session. On the day of the session, participants
were screened in person to verify age of at least 21 years us-
ing their driver license and a brief health survey. Individuals
who reported any positive responses on the CAGE ques-
tionnaire (Liskow et al., 1995), hepatic/renal impairment,
or peptic ulcer disease were excluded. Urine samples were
also tested for pregnancy in female participants. Women who
were pregnant or breastfeeding were excluded. For this study,

two participants did not provide audio recordings because
of technical difficulties; thus, 18 of 20 participants provided
audio recordings and were included in our analyses.

Procedures

Participants presented to the Department of Emergency
Medicine Applied Physiology Lab at the University of Pitts-
burgh at 8 A.M. After providing informed consent, partici-
pants completed a questionnaire including the 10-question
Alcohol Use Disorders Identification Test (AUDIT; Saunders
et al., 1993). Body weight and height were measured, and an
intravenous line was placed to administer nausea medicine
as needed (ondansetron 4 mg). Investigators prepared an
ethanol oral dosing to achieve a goal peak breath alcohol
concentration (BrAC) of > .20% using the Widmark formula
as follows: 2 g/L × (0.7 L/kg [for men] or 0.6 L/kg [for
women] × participant weight in kilograms) = dose of ethanol
in grams/0.3156 g ethanol per milliliter = milliliter distilled
spirits. Vodka was mixed with lime juice and simple syrup
and administered according to standard procedures (Fillmore
et al., 2000). Participants were given a maximum of 1 hour
to finish alcohol consumption.

This high dose of alcohol was chosen given that the
main aim of the original study was to identify toxicological
biomarkers related to high doses of alcohol consumption.
We attempted to minimize risk associated with high doses
of alcohol by following the National Institute on Alcohol
Abuse and Alcoholism (NIAAA) guidelines for alcohol
administration (NIAAA Guidance for Conducting Alcohol
Administration Studies with Human Participants, 2023),
including not enrolling alcohol-naive participants or indi-
viduals with alcohol use disorder, pregnant women, or older
adults. Participants were told the exact amount of alcohol
they would be drinking, the expected BrAC values, and that
they did not have to ingest the entire dose provided to them
and could stop the administration of alcohol at any time if
they felt uncomfortable or experienced any adverse effects.
A study physician was available to assess risk and provide
medical oversight throughout the study.

At baseline and each half-hour (for up to 7 hours), we
measured BrAC (BACtrack S80; KHN Solutions, Inc., San
Francisco, CA). Participants left the lab after 7 hours, when
they could ambulate safely and had someone to drive them
home. At baseline (before any alcohol consumption) and
each hour for up to 7 hours, participants were asked to read
a randomly allocated tongue twister while a smartphone was
placed on the table 1 to 2 feet from their mouth to record
the audio segment. No tongue twister was repeated within
individuals. The order of tongue twisters was randomly gen-
erated for each participant. We used tongue twisters because
they have been shown to be useful in inducing speech errors
in healthy speakers (Goldstein et al., 2007) and identifying
speech disorders (Kember et al., 2017).
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Measures

Alcohol intoxication. We chose to use a threshold of
BrAC > .08% as our classifier of alcohol intoxication
because it has been used in prior studies of acute alcohol
effects on psychomotor performance (Peacock et al., 2015)
and represents the legal limit of blood alcohol in adult driv-
ers in the United States.

Voice feature extraction. The spectrogram of each record
showed some interference between speakers presented at
the lab during the recording process. Hence, we first sepa-
rated the vocals of the subject from the surrounding speak-
ers by identifying regions of foreground and background
sounds using nonlocal (i.e., Wiener) filtering (Jiang et al.,
2002). After vocals separation, the time segments with no
words were removed from the record and extracted fore-
ground were used later in the segmentation and features
extraction process. Afterward, we partitioned each record
into nonoverlapping segments of 1 second length using the
original sampling rate of the Voice Recorder App, which
was 44,100 Hz.

Finally, a set of spectrogram features were then extracted
from each segment. One feature was the Mel-frequency
cepstral coefficient to describe the spectral envelope, which
is generally found to outperform formant features across
many speech-based classification tasks (Muda et al., 2010).
Other features included the spectral centroid or the mean of
the frequencies; spectral roll-off, defined as the energy of the
spectrum (Yu et al., 2021); and spectral flatness or tonality

coefficient (Dubnov, 2004). Finally, we examined spectral
bandwidth and contrast (Klapuri et al., 2006). The extracted
features from the spectrogram yielded a high number of
features per frame, which increased the dimensionality of the
data. Hence, we used principal component analysis to reduce
the dimensionality of the data by computing the highest 50
principal components.

Analyses

Given that data are nested within individuals, and thus
timepoints across individuals autocorrelated, we built support
vector machine (SVM) models for detecting alcohol intoxi-
cation for each timepoint compared with the baseline when
BrAC was 0%. A total of 18 participants were included in
model training and testing. We used a leave-one-participant
cross-validation in the training and testing process in which
17 subjects were used in the training in each run and 1 sub-
ject was used in the testing. We repeated that process for all
subjects and calculated the average performance measures
across all the runs. We present a Confusion Matrix showing
the number of 1-second voice segments classified as true
positives, true negatives, false positives, and false negatives
for each timepoint comparison as well as for an ensemble
classifier, which combines the predictions of the classifi-
cation from the SVM models. For each new instance, the
ensemble classifier selects the majority voting of all clas-
sifiers to predict the current instance class, as illustrated in
Figure 1.

FiGure 1. The classification scheme of the proposed algorithms. First, the voice records are separated into foreground and background vocals to remove noise
and vocals in the background. Second, a sliding window of 1 second length slides over the voice foreground to extract the spectrogram features for different
breath alcohol concentration (BrAC) levels. Then, the extracted features are fed into the corresponding support vector machine (SVM) model to separate the
baseline (BL) level from the intoxicated vocals. Finally, the separated SVM predictions are fed to an ensemble classifier that predicts the presence of intoxication
in the voice using a majority voting produced by the SVM classifiers.

[BrAC] = .0%

[BrAC] > .08%
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Results

Participants

Mean age was 29 years (SD = 9.7), with a range of ages
from 21 to 62 years. The majority (72%) of participants
were men, and all participants were White and non-Hispanic.
Mean AUDIT score was 5.8 (SD = 2.5), with six participants
meeting criteria for risky drinking based on a score between
7 and 15. Mean weight was 76 kg (range: 51–102) and mean
height 68 inches (range: 62–73). The BrAC was confirmed at
0% at baseline and increased above .08% in all participants
by 1 hour. The mean and range of BrAC for each comparison
are shown in Table 1.

Support vector machine models

Alcohol intoxication was predicted with an accuracy of
97.5% (95% CI [96.8, 98.2]); mean sensitivity = .98; speci-
ficity = .97; positive predictive value = .97; and negative
predictive value = .98. Table 1 demonstrates the confusion
metrics for each timepoint comparison.

Discussion

In this laboratory study, we built a model that correctly
classifies voice spectrographic segments during states of
alcohol intoxication from sober states with an accuracy of
98%. These findings are consistent with existing literature
demonstrating the effect of alcohol intoxication on speech
and voice (Bone et al., 2014; Fairbairn et al., 2015; Johnson
et al., 1990; Pisoni & Martin, 1989). Our model outper-
formed the best-performing prior model using the only other
known voice recording alcohol corpus we are aware of (i.e.,
German-language corpus from the Interspeech 2011 Speaker
State Intoxication Sub-challenge [Schiel et al., 2012], which
had an accuracy of 70% [Bone et al., 2014]). Our improved
accuracy may be attributable to several potential causes. We
used a standard set of tongue twisters given that they elicit
diadochokinesis, or antagonistic syllable successions, which
may function as a “phonetic stress test” for speech produc-
tion and increase the sensitivity of models. Second, we used
a standard set of tongue twisters as opposed to free speech

TABle 1. Comparison and Confusion Matrix based on 1-second voice samples

Variable BrAC: M (range) TP TN FP FN

BL vs. 1 hour 0 vs. .19 (.15 to .29) 168 255 8 3
BL vs. 2 hours 0 vs. .19 (.12 to .25) 176 236 5 3
BL vs. 3 hours 0 vs. .18 (.11 to .26) 178 193 8 2
BL vs. 4 hours 0 vs. .17 (.09 to .32) 182 139 1 5
BL vs. 5 hours 0 vs. .15 (.08 to .25) 179 149 2 4
BL vs. 6 & 7 hours 0 vs. .15 (.08 to .22) 184 114 1 2
Total 1,065 1,080 25 19

Notes: BrAC = breath alcohol concentration (gram%); TP = true positive; TN = true negative; FP = false
positive; FN = false negative; BL = baseline.

samples, which reduces the variability between individuals
and timepoints. Third, we used procedures to extract spectral
or frequency-based features; therefore, our findings relate
more to voice characteristics such as frequency and pitch
as opposed to time-based features relating to phonemes and
prosody, which may differ greatly between individuals.

Our study is limited in several key ways. Despite the
inclusion of both men and women of varied ages and un-
derlying alcohol use patterns, we studied a small sample
of adults and thus were not able to externally validate our
models. As well, we did not study non-White races or
Hispanic ethnicity, which have been shown to be associ-
ated with different speech characteristics, including pitch
(Andrianopoulos et al., 2001). We did not identify specific
features of speech that have been shown to be sensitive to
alcohol, such as speech volume (Fairbairn et al., 2015), er-
rors (Pisoni & Martin, 1989), or deaffrication (Zihlmann,
2017). As well, speech samples collected in the real world
may be shorter and not as sensitive to changes in cognitive
or motor processes affected by alcohol. We also were not
able to control for practice effects of completing tongue
twisters but attempted to minimize this by using different
tongue twisters for each timepoint and randomizing the order
of phrases. We did not have voice samples when the BrAC
was elevated above zero but less than .08 mg/dl; therefore,
we cannot comment on whether voice signatures would be
useful to detect lower risk drinking events. Finally, we were
missing voice recordings of two participants, which could
have influenced our models in unknown ways.

Several factors may impede real-world use of speech
and voice signatures to identify alcohol intoxication states.
First, environmental (i.e., background) noises and competing
voices that exist in the real world, especially around drink-
ing events, may require advanced pre-processing and filter-
ing to be useful. Second, other factors that impair or alter
speech, such as sleepiness or other substances (e.g., coffee,
drugs), are likely to affect model accuracy in unpredictable
ways. Third, it remains unknown whether individuals would
perceive programs that process speech samples as intrusive;
therefore, we do not know whether it would be an acceptable
method to use in the real world. It is likely that optimized
and acceptable programs would use other, less intrusive
sensor-based features related to psychomotor function as
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a first-stage (i.e., highly sensitive) screen, and thus trigger
voice analyses only as a second-stage (i.e., highly specific)
validation.

We believe next steps to advance the science of using
voice as a remote biomarker for acute alcohol intoxication
should consider the following. There needs to be the fund-
ing and coordination of effort to create a large repository
of high-quality audio samples across a range of adult ages,
racial and ethnic subgroups, and blood or breath alcohol
concentrations. There also need to be tools to allow research-
ers to easily and reliably extract phonetic and para-linguistic
characteristics of speech from samples. There should also be
serious consideration on relationship building with compa-
nies that already collect speech samples from smart speakers
(e.g., Amazon via Alexa) to test models using real-world
data. Finally, representative stakeholder groups should be
queried on how they could see this technology being useful
and acceptable. For example, if a smart speaker could iden-
tify alcohol intoxication, is it acceptable to prevent vehicle
use?

In conclusion, we found in this proof-of-concept lab
study that brief English speech samples are useful to clas-
sify alcohol-intoxicated states in adults. A much larger
participant pool with more varied voice samples collected
before and during the ascending and descending curves of
alcohol intoxication is urgently needed to move the science
of remote alcohol intoxication detection forward. As well,
prospective studies testing algorithms using different sensor-
based features related to psychomotor function are needed.
Finally, studies to better understand the acceptability of dif-
ferent remote monitoring approaches are needed to ensure
usability.
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